

Edexcel IAL Biology A-level 5.1-5.8 - Photosynthesis

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Write a chemical equation for the overall reaction of photosynthesis

Write a chemical equation for the overall reaction of photosynthesis

Light (as photons)

$6 H_2O + 6CO_2 \longrightarrow C_6H_{12}O_6 + 6O_2$

Outline the overall reaction of photosynthesis

Outline the overall reaction of photosynthesis

- The production of fuel molecules (like glucose) by using high energy photons to split the strong bonds in water molecules and combining the hydrogen atoms with carbon dioxide.
 Oxygen is released as a by-product of the photolysis of water
- It is split into two main stages: the light-dependent reactions and the light-independent reactions

What is a photosynthetic pigment?

What is a photosynthetic pigment?

A molecule present in chloroplasts that absorbs certain wavelengths of light

What is a Photosystem?

What is a Photosystem?

- Protein complex consisting of an **antenna complex** and reaction centre
- Involved in the absorption of light and transfer of electrons in photosynthesis
- Two types: Photosystems I (PSI) and II (PSII)

How do Photosystems I and II differ?

How do Photosystems I and II differ?

They absorb different wavelengths of light

Describe the process of light harvesting

Describe the process of light harvesting in photosynthesis.

- Antenna complex absorbs light energy of varying wavelengths and transfers it to the reaction centre
- Energy absorbed by two chlorophyll a molecules which emit 'excited' electrons

What type of reaction forms ATP?

What type of reaction forms ATP?

An endergonic reaction which requires energy from processes like respiration

Draw the reversible chemical equation for the breakdown and synthesis of ATP

Draw the reversible chemical equation for the breakdown and synthesis of ATP

$ATP \rightleftharpoons ADP + Pi$

Describe the structure of ATP

Describe the structure of ATP

ATP consists of adenosine (the nitrogenous base adenine bound to a ribose sugar) with 3 phosphate groups bonded to it covalently.

Why is ATP called the 'universal energy currency'?

Why is ATP called the 'universal energy currency'?

ATP is used as an energy source in all organisms

Why is ATP only used as a short term energy store?

Why is ATP only used as a short term energy store?

It is a very unstable molecule

What is the photophosphorylation of ADP?

What is the photophosphorylation of ADP?

The use of photons to provide the energy to carry out the unfavourable addition of a phosphate group onto ADP to form ATP

Describe the light-dependent stage of photosynthesis

Describe the light-dependent stage of photosynthesis.

- First stage of photosynthesis
- Takes place in the thylakoids of the chloroplast
- Uses light energy to produce ATP, reduced NADP and oxygen

State the sources of electrons for the electron transport chain

State the sources of electrons for the electron transport chain

Cyclic and non-cyclic photophosphorylation

Define cyclic photophosphorylation

Define cyclic photophosphorylation

The formation of ATP involving Photosystem I only

Outline cyclic photophosphorylation

Outline cyclic photophosphorylation.

- Involves Photosystem I only
- Excited electrons enter the electron transport chain to produce ATP and then return to Photosystem I
- No reduction of NADP and no water required to replace lost electrons

What is the purpose of cyclic photophosphorylation?

What is the purpose of cyclic photophosphorylation?

Produces additional ATP to meet surplus energy demands of the cell

Define non-cyclic photophosphorylation

Define non-cyclic photophosphorylation.

The formation of ATP and reduced NADP involving both Photosystems I and II

Outline non-cyclic photophosphorylation

Outline non-cyclic photophosphorylation

- Involves Photosystem I and II
- Excited electrons enter the electron transport chain to produce ATP
- NADP acts as a final electron acceptor and is reduced
- Water is photolysed to compensate for electrons lost from Photosystem II

What is the purpose of non-cyclic photophosphorylation?

What is the purpose of non-cyclic photophosphorylation?

Produces ATP and reduced NADP for the Calvin cycle

How does chemiosmosis produce ATP in the light-dependent stage?

How does chemiosmosis produce ATP in the light-dependent stage?

- Protons flow down their concentration gradient from the thylakoid space into the stroma via **ATP synthase**
- ATP synthase phosphorylates ADP to form ATP as protons flow through it

Describe photolysis

Describe photolysis

The splitting of a molecule of water in the presence of light that occurs during the light-dependent stage of photosynthesis. This produces protons, electrons and oxygen:

$$H_2^{}O \rightarrow 2H^+ + 2e^- + \frac{1}{2}O_2^{}$$

What happens to the products of photolysis?

What happens to the products of photolysis?

- H⁺ used in proton pumping and to reduce NADP
- e⁻ replaces electrons lost from chlorophyll a in PSII
- O₂ by-product, used for respiration or diffuses out of the leaf as waste gas

Explain how the electron transfer chain results in the production of reduced NADP

Explain how the electron transfer chain results in the production of reduced NADP

NADP acts as a final electron acceptor and is subsequently reduced

Describe the light-independent stage of photosynthesis

Describe the light-independent stage of photosynthesis

- Second stage of photosynthesis
- Does not require light energy and takes place in the stroma
- Uses carbon dioxide and the products of the light-dependent stage to build organic molecules

What is the light-independent stage also known as?

What is the light-independent stage also known as?

The Calvin cycle

Name the three main stages of the Calvin cycle

Name the three main stages of the Calvin cycle

- 1. Carbon fixation
- 2. Reduction
- 3. Regeneration

What happens during carbon fixation of the Calvin cycle?

What happens during carbon fixation of the Calvin cycle?

- Reaction between CO₂ and ribulose bisphosphate (RuBP) catalysed by enzyme RuBisCo
- Forms unstable 6C intermediate that breaks down into two molecules of glycerate 3-phosphate (GP)

What happens during reduction of the Calvin cycle?

What happens during reduction of the Calvin cycle?

- 2× GP are reduced to 2× **triose phosphate** (TP)
- Requires 2× reduced NADP and 2× ATP formed during the light-dependent reaction
- Forms 2× NADP and 2× ADP that enter the light-dependent reaction

What happens during regeneration of the Calvin cycle?

What happens during regeneration of the Calvin cycle?

- After 1C leaves the cycle, the 5C compound **RuP** forms
- **RuBP** is **regenerated** from RuP using 1× ATP
- Forms 1× ADP

How are nutrients produced as a result of photosynthesis?

How are nutrients produced as a result of photosynthesis?

- Formation of amino acids from GP (requires nitrates and sulfates)
- TP molecules used to produce sugars e.g. glucose, fructose, sucrose

Label this diagram of a chloroplast

Label this diagram of a chloroplast

A	Stroma	E	Intergranal Iamellae
В	Ribosome	F	Thylakoid
С	Inner membrane	G	Grana
D	Outer membrane		

How are chloroplasts adapted to carry out photosynthesis?

How are chloroplasts adapted to carry out photosynthesis?

- They contain many photosynthetic pigments to absorb many photons
- They contain many important enzymes used in photosynthesis such as RuBisCO and ATP synthase
- Thylakoids stacked into grana to increase the surface area of the thylakoid membrane
- Stroma directly surrounds grana products of photosynthesis diffuse directly into the stroma.
- Contain their own DNA (cpDNA) and ribosomes
- Inner chloroplast membrane less permeable than outer, enabling control over the movement of substances

What is an absorption spectrum?

What is an absorption spectrum?

A pattern of bands that occurs when a substance absorbs the different wavelengths of light

What is an action spectrum?

What is an action spectrum?

A graph of the rate of photosynthesis against each wavelength of light absorbed by a pigment

What is the purpose of chromatography?

What is the purpose of chromatography?

To separate different products from a mixture

How can pigments in chloroplasts be separated by chromatography?

How can pigments in chloroplasts be separated by chromatography?

Different pigments in chloroplasts have different properties and so will move different amounts through the chromatography medium, allowing separate pigments to be distinguished

State the equation used to calculate retention value (R_f).

State the equation used to calculate retention value (R_f) .

What factors affect the rate of photosynthesis?

What factors affect the rate of photosynthesis?

- Temperature
- Light intensity
- Carbon dioxide concentration

What is a limiting factor?

What is a limiting factor?

A variable that limits the rate of a particular reaction

Explain how temperature affects the rate of photosynthesis

Explain how temperature affects the rate of photosynthesis

- Higher temperatures provide more KE for enzymes involved in photosynthesis so the rate increases as temperature rises
- The optimum temperature is usually 25°C
- If the temperature becomes too high (around 45°C) enzymes become denatured and the rate of photosynthesis decreases

Draw a graph to show the effect of increasing temperature on the rate of photosynthesis

Draw a graph to show the effect of increasing temperature on the rate of photosynthesis

Explain how light intensity affects the rate of photosynthesis

Explain how light intensity affects the rate of photosynthesis

Rate of photosynthesis is directly proportional to light intensity \therefore as light intensity increases, the rate of photosynthesis increases.

Why does the rate of photosynthesis eventually plateau even if light intensity continues to increase?

Why does the rate of photosynthesis eventually plateau even if light intensity continues to increase?

Another factor (temperature or CO_2 concentration) becomes limiting.

Draw a graph to show the effect of light intensity on the rate of photosynthesis

Draw a graph to show the effect of light intensity on the rate of photosynthesis

Explain how carbon dioxide concentration affects the rate of photosynthesis

Explain how carbon dioxide concentration affects the rate of photosynthesis

As carbon dioxide concentration increases, the rate of photosynthesis increases

Why does the rate of photosynthesis eventually plateau even if CO₂ concentration continues to increase?

Why does the rate of photosynthesis eventually plateau even if CO_2 concentration continues to increase?

Another factor (temperature or light intensity) becomes limiting

Draw a graph to show the effect of carbon dioxide concentration on the rate of photosynthesis

Draw a graph to show the effect of carbon dioxide concentration on the rate of photosynthesis

When does temperature become a limiting factor?

When does temperature become a limiting factor?

When temperature drops too low on cold winter days

When does light intensity become a limiting factor?

When does light intensity become a limiting factor?

At night

When does carbon dioxide concentration become a limiting factor?

When does carbon dioxide concentration become a limiting factor?

- Atmospheric CO₂ concentrations generally remain constant
- CO₂ only becomes limiting when light intensity and temperature are not limiting factors

